๊ฒฐ๊ณผ ์žฌํ˜„์„ฑ์„ ์œ„ํ•œ SEED ๊ณ ์ •
ยท
๊ฒฝ์ง„๋Œ€ํšŒ
๋ฐฐ๊ฒฝ dacon ๋Œ€ํšŒ์—์„œ ์žฌํ˜„์„ฑ ํ™•์ธ์„ ์œ„ํ•ด ๊ฐ™์€ ์ฝ”๋“œ๋กœ ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์‹œ ๋‚ด์–ด ์ œ์ถœํ–ˆ๋Š”๋ฐ, ๊ฒฐ๊ณผ๊ฐ€ ๊ณ„์† ๋‹ฌ๋ผ์ ธ์„œ ์›์ธ์„ ์ฐพ์•„๋ณด๋‹ˆ data loader์—๋„ seed๋ฅผ ์„ค์ •ํ•ด์ค˜์•ผ ํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์•„๋ž˜ ๊ณต์‹๋ฌธ์„œ๋ฅผ ์‚ดํŽด๋ด๋„ ๋œ๋‹ค. https://pytorch.org/docs/stable/notes/randomness.html Reproducibility — PyTorch 2.5 documentationReproducibility Completely reproducible results are not guaranteed across PyTorch releases, individual commits, or different platforms. Furthermore, results may not be reproducib..
LLM Knowledge Update
ยท
ML&DL
๋“ค์–ด๊ฐ€๋ฉฐLLM์€ ๊ณ ์ •๋œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ํ•™์Šต๋œ ์‚ฌ์ „ํ•™์Šต ๋ชจ๋ธ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ตœ์‹  ์ง€์‹ ํ˜น์€ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ์ง€์‹์„ ์ž˜ ๋‹ต๋ณ€ํ•˜์ง€ ๋ชปํ•  ํ™•๋ฅ ์ด ๋†’๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ๋งค๋ฒˆ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šต ์‹œํ‚ค๋ฉด ๋˜์ง€ ์•Š์„๊นŒ? ํ•˜๋Š” ์ƒ๊ฐ์„ ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ ์ด ๊ฒฝ์šฐ์—๋Š” Catastrophic forgetting ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค.๐Ÿ‘€ Catastrophic Forgetting์ด๋ž€?: ์ธ๊ณต์‹ ๊ฒฝ๋ง์ด ์ƒˆ๋กœ์šด ์ •๋ณด๋ฅผ ํ•™์Šตํ•  ๋•Œ ์ด์ „์— ํ•™์Šตํ•œ ์ •๋ณด๋ฅผ ์žŠ์–ด๋ฒ„๋ฆฌ๋Š” ํ˜„์ƒ์ด๋‹ค.๊ทธ๋ฆผ์œผ๋กœ ์ดํ•ด๋ฅผ ํ•ด๋ณด์ž. MNIST ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•œ ๋ชจ๋ธ A๊ฐ€ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ–ˆ์„ ๋•Œ, ์ด ๋ชจ๋ธ์—์„œ SVHN ๋ฐ์ดํ„ฐ๋กœ ์ƒˆ๋กœ ํ•™์Šต์„ ์‹œํ‚จ๋‹ค. ์ดํ›„ ๋‹ค์‹œ MNIST ๋ฐ์ดํ„ฐ๋กœ ๋ถ„๋ฅ˜ TASK๋ฅผ ์ง„ํ–‰ํ•  ๊ฒฝ์šฐ, ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ(SVNH)๋กœ ํ•™์Šตํ•˜๊ธฐ ์ด์ „์˜ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์ด ์•ˆ๋‚˜์˜จ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.๊ทธ..
๐Ÿฆ™ LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions
ยท
CV(์ปดํ“จํ„ฐ๋น„์ „)
1. Abstract ์ด๋ฏธ์ง€ ํŽ˜์ธํŒ… ๋ถ„์•ผ์—์„œ๋Š” ๋„“์€ ์†์‹ค ์˜์—ญ, ๋ณต์žกํ•œ ๊ธฐํ•˜ํ•™์  ๊ตฌ์กฐ ๊ทธ๋ฆฌ๊ณ  ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์—์„œ ์ข…์ข… ํ•œ๊ณ„๋ฅผ ๋“œ๋Ÿฌ๋‚ธ๋‹ค. ์ €์ž๋“ค์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„์˜ ์ฃผ์š” ์›์ธ์ด network์™€ loss function์˜ receptive field ์˜ ๋ถ€์กฑ์ด๋ผ๊ณ  ์ง€์ ํ•œ๋‹ค. Lama๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ 3๊ฐ€์ง€ ์ „๋žต์„ ์ œ์‹œํ•œ๋‹ค. We propose an inpainting network based on recently developed fast Fourier convolutions (FFCs) We propose the use of the perceptual loss [20] based on a semantic segmentation network with a high receptiv..
TTA(Test time Augmentation)
ยท
CV(์ปดํ“จํ„ฐ๋น„์ „)
1. TTA๋ž€?TTA๋ž€ Train ๊ณผ์ •์ด ์•„๋‹Œ Test(Inference) ๊ณผ์ •์—์„œ Augmentation์„ ์ ์šฉํ•˜์—ฌ ๋‚˜์˜จ ๊ฒฐ๊ณผ๋“ค์— ๋Œ€ํ•ด ๋Œ€ํ‘œ๊ฐ’ (๋Œ€์ฒด๋กœ๋Š” ํ‰๊ท ๊ฐ’)์„ ์ตœ์ข… ์˜ˆ์ธก๊ฐ’์œผ๋กœ ํ™œ์šฉํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ณด๋‹ค ๋ชจ๋ธ์ด ์ผ๊ด€๋˜๊ณ  ๊ฐ•๋ ฅํ•œ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ๋œ๋‹ค.   ํ•ด๋‹น ๋ฐฉ๋ฒ•์ด ํšจ๊ณผ์ ์ธ ์ด์œ ๋Š” ๋ฌด์ž‘์œ„๋กœ ๋ณ€ํ˜•๋œ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์˜ˆ์ธก์„ํ‰๊ท  ๋‚ด๋ฉด์„œ ์˜ค๋ฅ˜๋„ ํ‰๊ท ํ™” ํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋‹จ์ผ ๋ฒกํ„ฐ์—์„œ๋Š” ์˜ค๋ฅ˜๊ฐ€ ์ปค์งˆ ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด๋ฅผ ํ‰๊ท ๋‚ด๋ฉด ์˜ฌ๋ฐ”๋ฅธ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ์œ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋•Œ๋ฌธ์— TTA๋Š” ๋ชจ๋ธ์ด ํ™•์‹ ํ•˜์ง€ ๋ชปํ•˜๋Š” ํ…Œ์ŠคํŠธ ์ด๋ฏธ์ง€์— ํŠนํžˆ ์œ ์šฉํ•˜๋‹ค.  2. ์ฝ”๋“œ์‹ค์Šต(Pytorch) https://github.com/qubvel/ttach GitHub - qubvel/ttach: Image Test Time Aug..